Time and Frequency Measurements Using the Global Positioning System
نویسندگان
چکیده
GPS, well known as a versatile, global tool for positioning, has also become the primary system for distributing time and frequency. GPS receivers are fixtures in telecommunication networks, and calibration and testing laboratories. They make it possible to synchronize clocks and calibrate and control oscillators in any facility that can place an antenna outdoors for lineof-sight reception of the GPS satellites. The GPS satellites are controlled and operated by the United States Department of Defense (USDOD). The constellation includes at least 24 satellites that orbit the earth at a height of 20,200 km in six fixed planes inclined 55° from the equator. The orbital period is 11 h 58 min, which means that a satellite will orbit the earth twice per day. By processing signals received from the satellites, a GPS receiver can determine its position with an uncertainty of < 10 m. The GPS satellites broadcast on two carrier frequencies: L1 at 1575.42 MHz, and L2 at 1227.6 MHz. Each satellite broadcasts a spread-spectrum waveform, called a pseudorandom noise (PRN) code on L1 and L2, and each satellite is identified by the PRN code it transmits. There are two types of PRN codes. The first type is a coarse acquisition (C/A) code with a chip rate of 1023 chips per millisecond. The second type is a precision (P) code with a chip rate of 10230 chips per millisecond. The C/A code is broadcast on L1, and the P code is broadcast on both L1 and L2. GPS reception is line-of-sight, which means that the antenna must have a clear view of the sky. If a clear sky view is available, the signals can be received nearly anywhere on earth. Each satellite carries either rubidium or cesium oscillators, or a combination of both. The on-board oscillators provide the reference for both the carrier and Time and Frequency Measurements Using the Global Positioning System
منابع مشابه
Compensation of Doppler Effect in Direct Acquisition of Global Positioning System using Segmented Zero Padding
Because of the very high chip rate of global positioning system (GPS), P-code acquisition at GPS receiver will be challenging. A variety of methods for increasing the probability of detection and reducing the average time of acquisition have been provided, among which the method of Zero Padding (ZP) is the most essential and the most widely used. The method using the Fast Fourier Transform (FFT...
متن کاملGPS Time Reception Using Altera SOPC Builder and Nios II: Application in Train Positioning
As functional integration has increased in hand-held consumer devices features such as Global Positioning System (GPS) receivers have been embedded in increasingly more devices in recent years. For example, the train positioning system based on GPS provides an integrated positioning solution which can be used in many rail applications without a cost intensive infrastructure. The network built i...
متن کاملImprovement in Differential GPS Accuracy using Kalman Filter
Global Positioning System (GPS) is proven to be an accurate positioning sensor. However, there are several sources of errors such as ionosphere and troposphere effects, satellite time errors, errors of orbit data, receivers errors, and errors resulting from multi-path effect which reduce the accuracy of low-cost GPS receivers. These sources of errors also limit the use of single-frequency GPS r...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کاملGPS Jamming Detection in UAV Navigation Using Visual Odometry and HOD Trajectory Descriptor
Auto-navigating of unmanned aerial vehicles (UAV) in the outdoor environment is performed by using the Global positioning system (GPS) receiver. The power of the GPS signal on the earth surface is very low. This can affect the performance of GPS receivers in the environments contaminated with the other source of radio frequency interference (RFI). GPS jamming and spoofing are the most serious a...
متن کامل